首页> 外文OA文献 >Noise estimation from averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation?
【2h】

Noise estimation from averaged diffusion weighted images: Can unbiased quantitative decay parameters assist cancer evaluation?

机译:从平均扩散加权图像估计噪声:无偏的定量衰减参数可以帮助癌症评估吗?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose\udMultiexponential decay parameters are estimated from diffusion-weighted-imaging that generally have inherently low signal-to-noise ratio and non-normal noise distributions, especially at high b-values. Conventional nonlinear regression algorithms assume normally distributed noise, introducing bias into the calculated decay parameters and potentially affecting their ability to classify tumors. This study aims to accurately estimate noise of averaged diffusion-weighted-imaging, to correct the noise induced bias, and to assess the effect upon cancer classification.\ud\udMethods\udA new adaptation of the median-absolute-deviation technique in the wavelet-domain, using a closed form approximation of convolved probability-distribution-functions, is proposed to estimate noise. Nonlinear regression algorithms that account for the underlying noise (maximum probability) fit the biexponential/stretched exponential decay models to the diffusion-weighted signal. A logistic-regression model was built from the decay parameters to discriminate benign from metastatic neck lymph nodes in 40 patients.\ud\udResults\udThe adapted median-absolute-deviation method accurately predicted the noise of simulated (R2 = 0.96) and neck diffusion-weighted-imaging (averaged once or four times). Maximum probability recovers the true apparent-diffusion-coefficient of the simulated data better than nonlinear regression (up to 40%), whereas no apparent differences were found for the other decay parameters.\ud\udConclusions\udPerfusion-related parameters were best at cancer classification. Noise-corrected decay parameters did not significantly improve classification for the clinical data set though simulations show benefit for lower signal-to-noise ratio acquisitions. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
机译:目的\ ud多指数衰减参数是根据扩散加权成像估计的,这些参数通常固有地具有较低的信噪比和非正态噪声分布,尤其是在高b值时。常规的非线性回归算法假定噪声为正态分布,从而在计算的衰减参数中引入偏差,并可能影响其对肿瘤分类的能力。本研究旨在准确估计平均弥散加权成像的噪声,纠正噪声引起的偏差,并评估其对癌症分类的影响。\ ud \ udMethods \ ud小波中位数绝对偏差技术的新适应提出了使用卷积概率分布函数的闭合形式近似的-域估计噪声。考虑基础噪声(最大概率)的非线性回归算法将双指数/拉伸指数衰减模型拟合到扩散加权信号。利用衰减参数建立对数回归模型,以区分40例转移性颈部淋巴结的良性。\ ud \ ud结果\ ud采用改良的中位绝对偏差法可以准确预测模拟噪声(R2 = 0.96)和颈部扩散-加权成像(平均一到四次)。最大概率恢复模拟数据的真实表观扩散系数要好于非线性回归(高达40%),而其他衰减参数没有发现明显差异。\ ud \ ud结论\ ud与灌注相关的参数最适合癌症分类。噪声校正后的衰减参数并未显着改善临床数据集的分类,尽管模拟显示了较低信噪比采集的好处。 Magn Reson Med,2013年。©2013 Wiley Periodicals,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号